High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization.
نویسندگان
چکیده
Noncovalent functionalization is a well-known nondestructive process for property engineering of carbon nanostructures, including carbon nanotubes and graphene. However, it is not clear to what extend the extraordinary electrical properties of these carbon materials can be preserved during the process. Here, we demonstrated that noncovalent functionalization can indeed delivery graphene field-effect transistors (FET) with fully preserved mobility. In addition, these high-mobility graphene transistors can serve as a promising platform for biochemical sensing applications.
منابع مشابه
Graphene-lead zirconate titanate optothermal field effect transistors
Related Articles Polarization mechanism and quasi-electric-double-layer modeling for indium-tin-oxide electric-double-layer thinfilm-transistors Appl. Phys. Lett. 100, 113506 (2012) High ON/OFF ratio and multimode transport in silicon nanochains field effect transistors Appl. Phys. Lett. 100, 113108 (2012) Integrated on-chip inductors with electroplated magnetic yokes (invited) J. Appl. Phys. 1...
متن کاملReview on Graphene FET and its Application in Biosensing
Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...
متن کاملReview on Graphene FET and its Application in Biosensing
Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...
متن کاملImpact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene.
We systematically investigated plasma-based chlorination of graphene and compared its properties before and after such treatment. X-ray photoelectron spectroscopy revealed that a high Cl coverage of 45.3% (close to C2Cl), together with a high mobility of 1535 cm(2)/(V s), was achieved. The C:Cl ratio n (CnCl) can be effectively tuned by controlling the dc bias and treatment time in the plasma c...
متن کاملChemically derived, ultrasmooth graphene nanoribbon semiconductors.
We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 24 شماره
صفحات -
تاریخ انتشار 2013